Multi-Fold Radiation Therapy (MFRT)

Shayla Enright
University of Miami

Mentors/Advisors:
Dr. Xiaodong Wu
Dr. Weizhao Zhao
May 1, 2015
Purpose

• To develop a technique to create a treatment plan consisting of multiple sub-plans in order to achieve higher levels of conformity, and reduced dose to normal tissue, without increasing treatment delivery time or MUs
MFRT Method

• Rather than using a single plan throughout the entire treatment course, several sub-plans are created P_1, P_2, P_3, P_4, P_5

• Each sub-plan provides full dose coverage to the PTV and the dose to the critical structures is within toxicity tolerances
MFRT Method

• The sum of these multiple sub-plans forms one cycle or “fold” treatment that will be repeated until the total dose is reached

• The resulting plan sum of all sub-plans is superior in both tumor dose coverage and dose reduction to normal tissue
Conventional Treatment

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td></td>
</tr>
<tr>
<td>P₁</td>
<td></td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
</tr>
<tr>
<td></td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
</tr>
<tr>
<td>P₁</td>
<td></td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
</tr>
<tr>
<td>P₁</td>
<td></td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
</tr>
<tr>
<td>P₁</td>
<td></td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
</tr>
<tr>
<td>P₁</td>
<td></td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
</tr>
<tr>
<td>P₁</td>
<td></td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
</tr>
<tr>
<td>P₁</td>
<td></td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
</tr>
<tr>
<td>P₁</td>
<td></td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
</tr>
<tr>
<td>P₁</td>
<td></td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
</tr>
<tr>
<td>P₁</td>
<td></td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
</tr>
<tr>
<td>P₁</td>
<td></td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
</tr>
<tr>
<td>P₁</td>
<td></td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
<td>P₁</td>
</tr>
</tbody>
</table>
Multi-Fold Radiation Therapy

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P₅</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1-Fold
Multi-Fold Radiation Therapy

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁</td>
<td>P₂</td>
<td>P₃</td>
<td>P₄</td>
<td>P₅</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₁</td>
<td>P₂</td>
<td>P₃</td>
<td>P₄</td>
<td>P₅</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₁</td>
<td>P₂</td>
<td>P₃</td>
<td>P₄</td>
<td>P₅</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₁</td>
<td>P₂</td>
<td>P₃</td>
<td>P₄</td>
<td>P₅</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₁</td>
<td>P₂</td>
<td>P₃</td>
<td>P₄</td>
<td>P₅</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6-Fold
Why?
IMRT Segments

- Advantage of IMRT is segments
- Conventional Example:
 - If $P_1 = 200$ segments
 - Total = 200 segments over entire treatment
IMRT Segments

- MFRT Example:
 - $P_1 = 200$ segments
 - $P_2 = 200$ segments
 - $P_3 = 200$ segments
 - $P_4 = 200$ segments
 - $P_5 = 200$ segments
 - Total = 1000 segments over entire treatment!

<http://bjr.birjournals.org/content/vol76/issue910/images/large/BJR25984-1.jpeg>
How?
Example

- Head and Neck 6996 cGy in 33 fx
- 3-sub plans P_1, P_2, and P_3
- 11-Fold MFRT
Creating P_1

- Plan P_1 is created
 - P_1 is assigned the full dose of 6996 cGy
 - P_1 is optimized like normal
Creating P_2

- P_1 is copied, pasted, and named P_2
 - Each plan is assigned $\frac{1}{2}$ the total dose
 - $P_1 = 3498$ cGy
 - $P_2 = 3498$ cGy
Optimization of P_2

- P_1 is set as a base dose plan
- Optimizing criteria for each structure is made more stringent
- P_2 is optimized
Creating P_3

- P_2 is copied, pasted, and named P_3
 - The 3 plans are each assigned $\frac{1}{3}$ the total dose
 - $P_1 = 3498$ cGy
 - $P_2 = 3498$ cGy
 - $P_3 = 2332$ cGy
 - The plan sum $P_1 + P_2$ is created
Optimization of P_3

- $P_1 + P_2$ is set as a base dose plan
- Optimizing criteria for each structure is made more stringent
- P_3 is optimized
Final MFRT Plan Sum

- The plan sum $P_1 + P_2 + P_3$ is created

- Sub-plans P_1, P_2, and P_3 are repeated until the total dose is reached.

- 11-Fold MFRT

- It is superior in both tumor dose coverage and dose reduction to normal tissue.
The MFRT technique was applied to 6 previously treated radiation therapy cases:

- 3 prostate RapidArc cases
- 3 three head & neck RapidArc cases
- 5 Sub-plans were used for each case
- All MFRT sub-plans had the same gantry, collimator, couch angles, and field angles as the original treatment plan
- Avoidance structures, dose “help” structures, and rings contoured on the original plan were not used
Case 1: Prostate

- PTV: prostate and nodes
- Prescription: 25 fx, 180 cGy/ fx, 4500 cGy total
- 2 full Arcs
DVH: Original vs MFRT
DVH: Original vs MFRT
Case 2: H&N

- 3 PTVs
 - High Risk PTV
 - Medium Risk PTV
 - Low Risk PTV
- Prescription: 33 fx, 212 cGy/fx, 6696 cGy total to High risk PTV
- 4 full Arcs
DVH: Original vs MFRT

- Brainstem
- Trachea
- Spinal Canal
- Mandible
- PTV LR
- PTV IR
- PTV HR

Ratio of Total Structure Volume [%]
DVH: Original vs MFRT

Parotid, R
Parotid, L
Esophagus
PTV LR
PTV IR
PTV HR
Conclusion

• Improved dose distributions requires more segments or more beams
 • Requires a longer treatment time
 • Increase in leakage radiation (excess MUs)
Conclusion

• MFRT allows for many segmentations while maintaining a short treatment time and low radiation leakage

• Less radiation delivered to surrounding healthy tissue and organs

• More conformal treatment to the shape of the tumor

• This could be implemented as an automatic software feature in the TPS
Acknowledgments

• Xiaodong Wu, Ph.D., Biophysics Research Institute of America

• Weizhao Zhao, Ph.D., Department of Biomedical Engineering at the University of Miami

• Elizabeth Bossart, Ph.D., Kelin Wang, Ph.D., Sylvester Comprehensive Cancer Center at the University of Miami

• Bruce Phillips, South Florida Radiation Oncology
Thank U!

